W
US ARMY
MATERIEL

COMMAND

TECHNICAL REPORT BRL—-TR-2696

A NONPARAMETRIC STATISTICAL APPROACH

TO THE VALIDATION OF
COMPUTER SIMULATION MODELS

William E. Baker
Malcolm S. Taylor

ELECTE
JAN2 1 1986
November 1985

DTG FILE COPY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MARYLAND




TR IR A A R T AR WU T IV ST TR QR T NL N e R r e e kL a Iy w ey ¥ o R T L
SRR s T SRR WAL R LA T ) R AR GRS Aol e o e A

[l

Destroy this report when it is no longer needed.
Do not return it to the criginator.

Additional copies of this report may be obtained ) >
from the National Technical Information Service,

U. S. Department of Commerce, Springfield, Virginia

"22161. .

-

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

The use of trade names or manufacturers' names in this report
does not constitute indorsement of any commercial product.




P S e o o i ia T o e e .
--.,\i‘)' ‘;Eﬂ-_;.,:. p S B e A ot Dl

’ UNCLASSIFIED
: SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
s READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
TECHNICAL REPORT BRL-TR~ 2696 b-A/ 6337
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A NONPARAMETRIC STATISTICAL APPROACH TO THE
VALIDATION OF COMPUTER SIMULATION MODELS

§&. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
¢ WILLIAM E. BAKER

MALCOLM S. TAYLOR
. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PrIGRAM ELEMENT, PROJECT, TASK
: PO AREA & WORK UNIT NUMBERS

US Army Ballistic Research Laboratory
ATTN: SLCBR-SE
Aberdeen Proving Ground, MD 21005-5066

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Ballistic Research Laboratory

ATTN: SLCBR~DD-T {13 NUMBER OF PAGES
Aberdeen Proving Ground, MD 21005-5066 40

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) | 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, {f different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveras sids If necessary and identity by block numbar)

* Computer Simulation Model Wilcoxon Signed - Ranks Test
, Validation Mann - Whitney Test
/ Statistics VAST Computer Simulation Model
: / Nonparametr1c N
3!- Ayip_-r =

20. APSTRAACLT rCal_:tku an reverse sidy i neceesary snd idenzify by block rumber)

* Initially we completed a literature search in order to identify existing
methods of computer simulation validation. Nonparametric statistical
techiniques were subsequently adapted to both deterministic and stochastic
simulations, and these procedures were applied to a computer model currently
in use at the Ballistic Research Laboratory. Monte-Carlo methods provided
an indication of the power of these tests, and a mention of future work
concerning attempts to 1ncrease th1s power has been 1nc1ud5g_1n this report.

Cagprrrede | [V 1 fyenai-idn Tmodstars I oragks ) €]
DD o 4 EDITION OF 1 NOV &5 1S OBSOLETE, (/ UNCLASSIF

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




TABLE OF CONTENTS

Page

LSt Of TSt At M e iiiiteeeitneieitiereiieerecitasesasatecieessssensenammnntasssesssssssssnsnsannnsessnnes D

List of Tables...........

sssessasrssane

sesbssestisnnee

by

. Introduction.

sesesessae

sssnvescts

esmssensss

ssepisacsansse

II. Literature Review

ssecoae

seseseae

seveea

II. Validation Procedures .........ccoceoiiminiiiinniinniriiniinitccneeccceniineseesenceenenee e 13
IV, EXample ...ttt ssesessescsssnescnseensncsens &0
V. SUMIMATY .cevieiiiiirreenirerecereesetersreeesesssesaessnaessssasssssnssrasessssesasssessasssensassesasns 0O

Acknowledgement ..........ccouiiiiiiiiiiniininiitine ettt eeetee st eee e e eeee s s B ]

References.

D adeseass .....33

Distribution List............

“ebacassiasaena

tesase

-

v
ey o




LIST OF ILLUSTRATIONS

1. Relationships between the various concepts of a computer simulation...............11

2. Power of 5% - level test
Hy: F = Normal {0,}) vs. H;: F = Normal (# 5£ 0,1} ....c.cccvvvenrnnnnin. vrevenenen 17

3. Power of 5% - level test

Hy: F = Uniform (-1,1) vs. Hy: F = Uniform (2 % -1,1)ceovecesvcooeeervcoeressn 17

4. Power of 5% - level test
Hy: F = Cauchy (0,1) vs. H;: F = Cauchy (a 3£ 0,1} ..c.ccccceviinnnriincnnnn 18

5. Power of 5% - level test
Hy: F = Logistic (0,1) vs. H;: F = Logistic (a 3£ 0,1} ....... cerrenteanaan ISPTRRTORRIN .

6. Power of 5% - level test
Hy: F = G = Normal (0,1} vs. H;: F = Normal (0,1),
G = Normal (1 72 0,1) . cccoriiiritineteteenrririenececsstestessensansesansasssseesesesens 21

7. Power of 5% - level test
i Hy: F = G = Uniform (-1,1) vs. H;: F = Uniform (-1,1),
= G = Uniform (a 7 - 1,1} ccceeeieniinneecniecseecsenens ceeree s nsnaas ceeeeereneas 21

e,
£~ 8. Power of 5% - level test

-': Hy: F = G = Cauchy (0,1) vs. H;: F = Cauchy (0,1),
- G = Cauchy (a # 0,1).......... vereennns eetrereetetenterensaren cervereereneas e e 29

9. Power of 5% - level test
Hy: F = G = Logistic (0,1) vs. H;: F = Logistic (0,1),
G = Logistic (a 7 0,1)........... ceeeneaene cerenteeene sanaerenestenees reeteeee et aee 22

AR
3

.

-
E]

e
=

o

B b

"y
«n" o'y

oy
5

]
bt

R
"
N

,‘!:UI' [N

Koid
W

A -n*

L l.' (3

PR et Y

. »
T

T 1L 1

o=, SR Tt W c _aT LF % e Tt L mITRIM CF o= A . LY
N AR U L LI, £ T .
S ol i i e . T S W S TN




LIST OF TABLES

1. Loss of Function Values - Mobility Kill ......ccccccc...

9. Deterministic Model .....c.ooeieimriimimininiiisisiescsnes

3. Stochastic Model

O T T LY R R E R X LA T R b dd

Page
rerereeeeesrsrereneneeess 24-2D

same

26

28




AR
R B

.“ iontl A ﬂi ,

n:‘" u “&]‘L‘M" MR

5

S R Tl I ST Tt S LT T v - e W L Iw
Eﬂ—fii;,g}_iﬁ_i‘fﬂ;ﬁiﬁfxfﬁéigtﬁ&&;ﬁ;&‘* S B R L R TIG

=
>

|

e el T} LN

1. INTRODUCTION

For three decades interest in simulation modeling and simulation languages has
been expanding, almost keeping pace with the phenomenal rate of growth of computer
technology. Lagging somewhat behind has been the concern for the validation of the
resulting simulation models; that is, the establishment of some level of confidence that
the model does, in fact, accurately mimic some real-world process. In the last fifteen
years, research in validation techniques has been substantially increased; and a
consensus of general conclusions has formed:

1. validation is problem dependent - there is no one general validation
technique, mainly because the output from 2 model may be independent or
correlated, univariate or multivariate, stationary or dynamic, and so forth;
in fact, the model itself may be deterministic or stochastic,

2. in general, absolute validity is nonexistent - once a particular technique has
been established, the model is usually validated only for a specific purpose
and over a specific range of values,

3. empirical data are necessary - in order to validate a model, some comparison
of output data with real-world data must be made; furthermore, these
empirical data must be independent of those used in construction of the
model, and

4. statistical tests are desirable - of the many metheds proposed for validating
simulation models, the use of statistical tests seems to be preferred, possibly
because of the ability to establish some level of confidence.

Because computer simulation models are prevalent at the Ballistic Research
Laboratory, the Experimental Design and Analysis Branch of the Systems Engincering
and Concepts Analysis Division was funded to perform research in the area of the
validation of such models. Results from the research are summarized in this report.
They include a thorough literature review in which we examined existing validation
techniques along with additional related information. Eventually we developed two
nonparametric procedures, demonstrating them on a simulation model currently used by
the Vulnerability /Lethality Division.

Nonparametric validation methods generally involve a procedure known as
hypothesis testing. The initial step is to state a null bypothesis, usually "the simulation
model is valid.” Then a level of confidence is established, often 95%¢; and a particular
test statistic is chosen. Two different errors are present in hypothesis testing. The first
is called a Type I error and occurs when a true null hypothesis is rejected. If the level
of confidence has been set at 95%, then it follows that the probability of a Type I crror
is 5%. However, in simulation model validation a Type I error is the more important
to control; this occurs when a false null hypothesis is accepted. No level of confidence is
pre-established to guard against accepting an invalid model; but, for any particular
statistical test, a measure of the protection against this error is given by the power of
the test, equal to the probability of rejecting the null hypothesis when it is false.
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Unfortunately, there is a tradeoff between the two error types; as the level of
confidence is increased (lower probability of a Type I error), the power of the test is
decreased (higher probability of a Type Il error). This implies that once way to increase
the power of a test is to decrease the level of confidence in it. There are, however, more
satisfactory ways; and they will be mentioned in the summary of this report. The
important point to remember is that when attempting to validate a simulation model
using hypothesis testing, it is imperative that the statistical test be a powerful one.

II. LITERATURE REVIEW

As the electronic computer became a more powerful tool, computer simulation
became a more viable method by which the behavior of a given process could be
characterized. As early as the 1950’s, articles were being published about computer
modeling of eniire systems; and soon after, specialized simulation languages were
developed. The pioneers in this field realized the need for some assurance that the
simulation output would be consistent with the empirical data that were available.
However, prior to 1967 there was very little written that provided any explicit
procedures which might be applied to determine the soundness of a computer model. In
that vear several papers concerning this problem were published, and two of them
became a foundation upon which most subsequent efforts have been constructed.

PV LR o

In i957, Fishman and Kiviat! provided definitions which differentiated the notions
of verification and validation, ferms which had previously been used interchangeably.
"Verification determines whether a2 model with a particular mathematical structure and
data base actually bebaves as an experimenter assumes it does. Validation tests
whether a simulation model reasonably approximates a real system.”™ Most individuals
working in this area today have subscribed to these definitions, although papers
continue to be published which do not discriminate between the two ideas. Figure 1,
taken from a paper by Winter, et. al.%, is a Venn diagram illustrating the relationship
between verification, validation, and other concepts within the field of computer
simulation. Stone® believed the word assessment ... is preferable to validation which
has a ring of excessive confidence about it.” However, in this paper we will continue to
consider validation as defined by Van Horn,* who expanded on the previcus definition
by giving it a somewhat statistical flavor. “Validation ... is the process of building an
acceptable level of confidence that an inference abtout a simulated process is a correct or
valid inference for the actual process.”

! Fubmas, GS. and Kwat, P.J, "Diital Comprter Simalatios. Statistical Connderations,” Memorasdom RA4-3387-PR. T'he .
Razd Corporatios, 19867,

2 Wister, EM | Wizemiller, DP, and Ujibara, JK . "Venfcaatios aed Validatios of Esgineenng Simalstions with Mizimal Data”

Em:::ﬂlhﬁ E{ !h, 1036 C!mmpl S:anﬂ!': Qimgl“inn g;gg]gggsg, 1976.
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3 Stone, M, "Cross-Vahdatizg Choice and Assessment of Statistical
Prediction.® Journal of the Roval Stavnticad Seqety. series B-36, 1974,
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FIGURE 1: RELATIONSHIPS BETWEEN THE VARIOUS CONCEPTS OF A COMPUTER SIMULATION

The second influential paper to appear in 1867 was by Naylor and Finger® In it
they proposed a three-stage approach to validation of a computer simulation. This
technique, or a modified version of it, has been used by numerous authors. Law® has
augmented their approach with specific suggestions for each of the three stages:

1. develop high face-validity - insure that the simulation seems reasonable to
those people who are knowledgeable in the area,

2. test the simulation assumptions - examine the data used in building the
simulation and empirically test the assumptions drawn from those data, and

3. compare simulation output data with empirical data - use tests, statistical if

possible, to determine a level of confidence in the simulation.

When attempting to validate existing models, the first two stages will often have
already been completed by the developer of the simulation leaving only the third stage,
potentially the most difficult.

5 Naylor, TH and Finger, JM, *Vetification of Computes Simalatisn Maddls,” Manarement Sciepce Vol 314 No 2, 1967
s Law, A M, Sipulation Modeling and Apalves. University of Wiscennn, 1070




Not everyone subscribes to the three-stage approach to validation. However, there
does scem to be a general agreement that the third stage, comparing simulaticn output
data with empirical data, is crucial. Somctimes obtaining empirical data in the region
of applicability is very difficult, especially in enginecring simulations. Winter, et. al.®
mention in that case, "The quality of the component models and the excelient
knowledge of the random process along with a systematic verification must be a
substitute for validation.” However, Fishman and Kiviat! are firm in their statement
that ™ ... if no numerical data exist for an actual system, it is not possible to establish
the quantitative congruence of a model with reality.” In attempting to perform this
third stage, Wright? suggests that three questions be considered:

Tl 1
‘.u "l it 'I-
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1. how do we intelligently compare simulation output data with empirical data,
2.  how do we collect and exploit the empirical data used in our tests, and

3. how do we transform the results of these tests into a confidence in the
computer simulation?

Finally, Baird, et. al® warn that the empirical data used for comparison with the
simulation output data must be independent of those used in building the computer
model; otherwise, we have only verification of the simulation.

Tvtula® bas divided the many methods used for the data comparison into five
general categories:

‘v!';.'";p "
I
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1. judgemental comparison - this method seems to be the most widely used and
includes graphical analysis and the comparison of common properties such as
the mean and variance; it is easy to use and quite practical, but the impadt
of errors in judgement is difficult to assess,

U "'j“l' ‘-n

L]

2. hypothesis testing - this method includes goodness-of-fit tests, analysis-of-
variance techniques, and nonparametric ranking methods; since this will be
the category of interest in our report, the advantages and disadvantages will
be discussed in the succeeding section,

"

3. spectra! analysis - since the ouiput of many simulation modcls is in the foria
» of a time series, this method is particularly useful; however, it is diflicult {0
relate the invalidity at a particular frequency to the overal' simulation -
validity,
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8 Bard, AM | Goldmaz, R B, Bryas, W, Holt, W C_ and Beirsee, F M, *VenScation azd Validation of BF-Enwirczmeztal
Models - Metbodology Overvien,” Soeisg Aersapace Compaty. 198D

s Tywels, TP, "A Mealod for Validatizg Misule Syriem Simulation Models® Techrical Report E-78-31, US Army Miwiis
Rerearck asd Development Commasd, 1078
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4. sensitivity analysis - this method can determine a range of parameter values
and assumptions over which the simulation is valid, but it is usually difficult
to analyze the effects of the characteristies drifting outside this range, and

5. indices of performance - tais method is useful in ranking models; however, it
is impossible to pick a value for a given index which will always imply a
valid simulation.

Validation is a difficult process because, as Tytula® points out, no single
satisfactory method exists. Most techniques are problem dependent; and, indeed, the
output data of a simulation may be independent or correlated, urivariate or
multivariate, stationary or dynamic. In fact, Garrett!® states that, "The critical
dimension affecting the applicability of various techniques is that of the deterministic or
stochastic nature of the output.” Only a few authors have attempted to provide a
general validation technique - see Gilmour!' for an example. Most have developed
methods which apply to a select subset of simulation models; and, even then, the
simulation is often validated only for a particular purpose or over a particular range of
values. In th2’ case, care must be taken not to apply the simulation model outside the
validated regio..

R
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PR

M. VALIDATION PROCEDURES

In this report we will be examining hypothesis testing as a method for validating
both deterministic and stochastic computer simulation models. This type of procedure
allows some level of confidence to be attached to the results. When employing
hypothesis testing, several assumptions must usually be stated; but by wusing
nonparametric ranking techniques we will eliminate one major (and often unjustifiable)
assumption - that the data arise from a normal distribution.

Sargent!? notes that for hypothesis testing we generally assume a null hypothesis
that the simulation model is valid. Then by establishing a level of confidence for a
particular statistical test, we fix the probability of a Type I error in which we reject a
valid model. However, for simulation validation it is more important to minimize the
probability of a Type Il error, that is, accepting an invalid model. The magznitude of
the Type I error can be determined by the power function of the statistical test where
the power is the probability of rejecting a faise null hypothesis. For a fixed sample size
there is a tradeoff between the two error types, so that we can increase the power at the
expense of the confidence level. Urfortunately, the power can not be computed against

-1
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Gilmour, P, A General Val:dation Procedare for Computer Simclation Models,® The Austrailiag Computer Jazrpal Vels
No 3, 1673
3
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an alternative Eypothesis as general as, "The simulation model is invalid®; and
therefore, it must be examined against an array of different specific alternative
hypotheses. Nevertheless, we continue to search for powerful statistical tests with
justifiable assumptions which will still provide acceptable levels of confidence.

Let X = (x;, Xa, ..., X;) be a vector of inputs to a simulation model, and let y be an
output resulting from X. Then y may take on a single value, as in a deterministic
model, or many values, as is the case with a stochastic model. Let z be the
corresponding value from the real-world process given the same input vector. In
general, ¥ will not be equal to z since X contains only a finite number of input variables;
ostensively, the most relevant ones. The purpose of the simulation model is to mimic the
real-world process. Thus, in attempting to validate it, we compare each empirical value
with the corresponding model output generated under the same conditions; that is, the
same values for the vector X.

Suppose there exist N pairs of data (yy, 2;), (¥2, 2}, - - -, (¥N, 2x) available for
comparison, where each pair corresponds to a different input vector and where ezach y;
may itseil be a vector of values in the case of a stochastic model. Reynolds and
Deaton! note that because each of the pairs was generated under different conditions, it
would be incorrect to poo! the data and proceed with the testing of our hypothesis.
Rather, we must find a statistical procedure which examines each pair individually and
then allows for the combination of these results into one overall test that provides
reasonable power. With this as our goal, we propose to use two nonparametric
statistical procedures - the Wilcoxon signed-ranks test in the case of a deterministic
model and, for a stochastic model, a process which combines independent cases of the
Mann-Whitney test.

Deterministic Model

A deterministic model provides cne and only one set of output values for each set
of input values. Such a model is frequently used as a first attempt a! representing a
stochastic system, and quite often it will adequately simulate at least the coarse
behavior of such a system.” The deterministic model generally has the advantages of
being both simple and inexpensive. Any individual output value y from the model can
be compared with an empirical value z obtained from the actual system under the same
set of input values. Considering N different input sets, the available data consist of N
observations {¥;. 2), {¥2, 22), - - ., (¥, 2n) of bivariate random variables. The Wilcoxon
signed-ranks test is applicable. The null hypothesis of this test can be loosely stated as.
"The values of the y;’s tend to be the same as the values of the z’s,” which we can
interpret as, "The simulation model is valid.”

Reyeolds, ME | a2d Deatez, ML, *Coxzpanstds of Some Tests for Validatiop of Stschastic Sumslation Model:”
Statist - Srocly Cemrata Vel1l No6, 1532




The Wilcoxon signed-ranks tests is a hypothesis test for identical medians that uses
paired observations. To use it, we first compute D; =y, -z for i = 1, 2, ..., N,
recalling that each of these random variables may be from a different distribution. The
following four assumptions are made concerning these D;'s:

1. the distribution of each D, is symmetric,

2. the D;'s are mutually independent,

3. the D;’s all have the same median, call it m 5, and
4. the mecasurement scale of the D;'s is at least interval.

The fourth assumption means that for any two observations on the random
variable we can distinguish not only which is larger and which is smaller, but also which
is farther from the common median.

The null hypothesis is that mgq = 0; in other words, that all the D;'s have mcdians
equal to zero. This would indicate that the - © < of the y;'s and the z;'s tend to be the
same. A rank R;, based on the absolute vawue of each Dy, is assigned; thus, the R;'s
consist of the integers 1 to N. R; is then adjusted to zcro for each D; < 0. The non-
zero integers that remain are the ranks of the positive D;'s; and a test statistic T is

defined to be their sum; that is, T = ¥, R;. Very high and ve~ - low values of T cause

1
rejection of the null hypothesis. The theory behind the test is explained very clearly by
Conover'4, where tables containing various quantiles of the Wilcoxon signed-ranks test
statistic are available.

One further assumption is sometimes made, that each D; is a contiruous random
variable. Theoretically, this assures that there will be no D; = 0 and no D; = D; where
i7£j. However, in practice the available data may produce zeros and ties; and methods
have been devised for handling these situations. Although it is often recommended that
the zeros te dropped from the data immediately, they are sometimes very important,
especially when attempting to show that there is no significant difference between the
values of the y;’s and z;'s. Lehmann!® proposes ranking the absolute values of all the
D;’s including the zeros and, in the case of ties, assigning each of the tied values the
average of the ranks normally due them. Then the R;'s are adjusted by multiplying
them by -1 if D; < 0,0if D; = 0, or 1 if D; > 0. The test statistic T} then becomes
the sum of the positive R;’s, and a second test statistic Ty is defined as the sum of the
absolute value- of the negative R;’s. Rejection of the null hypothesis is caused by very
bhigh values of either T, or T,.

M o onover, W J., Practical Nopparametnie Statistics, Jobo Wiley & sons, Inc , 1071,

15 Lebmann, E.L, Nonparamsatsics, Statistical Mcthods Based op Ranks, Holden-Day, Inc, 1975
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As mentioned earlier, a misuse of hypothesis testing as a method of simulation
validation occurs when too little concern is shown for the power of the test. The power
is the probability of rejecting an invalid model, and we would like this probability to be
as close to one as possible. Unfortunately, the power can bhe calculated only for specific
alternative hypotheses. In order to generate power curves for the Wilcoxon signed-ranks
test, it is convenient to make the additional assumption that all D;'s come from a
common distributicn. Although this may not always be valid, it does afford us an
indication of the power of the test against an alternative consisting of a shift in the
mean, which fo* a symmetric distribution is identical to.the median. Figure 2 shows
some power curves for this test against a shift in the mean when the underlying
distribution of the D;'s is normal with a mean equal to g and a variance equal to one.
Recall that a true null hypothesis would indicate that the values of the y;'s and the z,s
tend to be equal. These curves were generated using a Monte-Carlo procedure which
incorporated 10,000 replications. Note the increase in power as the number of
observations increases. Figures 3-5 display some power curves for other alternative
hypotheses, each figure assuming a different common distribution for the D’s with a
corresponding modification of one of the parameters of the distribution. Notice when
the abscissa is equal to zero (when the null hypothesis is true), the probability of
rejection is 0.05 - the value chosen for the probability of a Type I error. The faster the
curve approaches one, the more powerful the test against that particular alternative
hypothesis. Although very narrow in their scope, these results do provide us with an
indication of the overall power of the test against a shift in location and allow us to
determine the extent to which the probability of a Type I error might be reduced by an
increase in sample size.

Stochastic Model

A stochastic model provides a set of output values that, for each given set of input
values, occurs with a certain probability. Mihram!® states that this ”... probability ...
serves as a measure of our human ignorance of the actual situation and its
implications.” Generally, the behavior of the system is too complicated to include all of
the appropriate inputs in the computer model. Even if it were possible, the return in
accuracy provided by such thoroughness may be small. Refinement of a computer
model usually leads to stochastic modeling; and because of the abilitics of today’s
computers, the use of such modeling has substantially increased.

Given M replications, output of the model becomes a set of values y!, v2, ..., vM for
each set of input values which can be compared with (in our case) a single corresponding
empirical value z. Recall that X is a vector of most, but not all, of the relevant inpnt
variables. Then z, given the value of X, is a random variable reflecting the random
error due to the exclusion of certain factors from X. Also y, of course, is a random
variable since the simulation model is stochastic. We would like to show that F(y|X).
the conditional distribution function of y, is equal to G(z|X), the conditional

distribution function of z for all - 00 < y, 2 < o0 and for all X.

18 Mibram, G A, Simulstiop Stauistical Foundations and Methodology, Academic Press, lac, 1972
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Considering N different input sets, the available dj‘xta consist of N observations
A yE oy 2), 52 Y2 o ¥ 20), o o . (Y Y o YAL 2n) of multivariate
random variables, wkere the y¥'s for any given observaticn share a common distribution.
Mihram!® suggests ranking y;}, y?, ..., y;M, z; for each i: if the model is valid, we would
expect the z; to fall somewhere in the middle of such a ranking. This is the initial step
in a procedure known as the Mann-Whitney test, a particular case in which one of tlie
random variables, namely z;, has a sample size of one. Since we are dealing with N
observations, we need a method by which we can combine independent cases of the
Mann-Whitney test; such a method has been proposed by, Van Elteren!? and referenced
ia a very clear example by Reynolds, et.al.,!8.

The Mann-Whitney test is a hypothesis test involving samples from two
distributions that tests for equality of the distributions. For each input set X a sample
of M output sets y!, y2 ..., yM is obtained from the computer simulation, and the
empirical observation z provides another sample of size onme. The following three
assumptions are made:

1) both samples are random samples from their respective populations,

2) in addition to independence within each sample, there is mutual
independence between the two samples, and

3) the measurement scale is at least ordinal.

The third assumption means that for any two observations on the random variable we
can distinguish which is larger and which is smaller.

The null hypothesis is that F(y| X} = G(z|X) for a given input set X. When we
combine N of these tests, in the manner suggested by Van Elteren, we have the null
hypothesis of F(y |X) = G(z|X) for all -c0 <y, z < o0 and for all X, which we can
mterpret as, "The simulation model is valid.” Let R; be the rank of z; in the ith
observation (y;!,y;2, ..., v}, 2); thus, R, is an integer hetween 1 and M + 1. Then a

test statistic T is defined as the sum of the R;’s over a.. N observations; that is,
T = ¥ R;. Very high or very low values of T will cause rejection of the null hypothesis.

i
The theory behind the Mann-Whitney test is given in Conover'4, and the combination
of such tests is explained by Van Elteren!’.

A fourth assumption is usually made, tkat both samples consist of random
variables from continuous distributions. As in the case of the Wilcoxon test statistic,
this is to assure that there will be no zeros and, more importantly, no ties. However, for

I Van Elteren,P, "On the Combanation of Independent Two Sample Tests of Wilcoxon,”
Bulletin de 'lnstitute International de Statistique, 37, 1060

18 Reynolds, M R, Burkbart, HE, and Daniels, R F,, *Procedures for Statistical Validation of Stocbastic Simulation Modele”
Forest Sciepce, Vol 27 No 2, 1981.
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this test, a moderate number of ties is tolerable; and they are handled as previously by
assigning each of the tied values the average of the ranks normally e them.

The power of this test against alternative hypotheses analogous to those shown for
the Wilcoxon test is displayed in Figures 6-9 which were generated using a Monte-Carlo
procedure which incorporated 2,000 replications. Once again, in generating these power
curves, we have made one additional, albeit restrictive, assumption; namely, the
distribution of the y;'s is the same for each vector of input values, and similarly for the
distribution of the z;'s. Although it would be preferable to avoid this assumption, it is
necessary in order to test against specific alternative hypotheses - in this case, a shift in
the mean; and, as with the WilcoxoL test, these curves do provide an indication of the
overall power of this combination of Mann-Whitney tests against the shift in location.
This test appears slightly less powerful than the Wilcoxon signed-ranks test. This is a
result of the assumption of the less stringent ordinal measurement scale. If M = 1, the
combined Mann-Whitney test reduces to the sign test, a nonparametric procedure
similar to the Wilcoxon test but making no assumption of symmetry of the distributions
and consequently requiring only an ordinal measurement scale, resulting in a less
powerful test. Reynolds and Deaton'3 look at some test statistics similar to T designed
to be more powerful against other alternative hypotheses.

IV. EXAMPLE

The Vulnerability Analysis for Surface Targets (VAST) model is a computer
simulation currently in use at the Ballistic Research Laboratory to evaluate the effect of
kinetic energy projectiles or shaped-charge threats against a single surface target.!’® It
incorporates damage from both the primary penetrator and any associaied spall
fragments; but currently it is unable to handle damage resulting from blast, heat, and
certain synergistic effects such as ricochets. Furthermore, there is a variety of opinions,
estimates, and decisions, all based on the experience of the vulnerability analysts but
generally providing vague and imprecise data, which subsequently serve as input to the
simulation. Nevertheless, results demonstrate reasonable face validity, so an attempt at
statistical validation of the model seems feasible.

A target description is produced by a separate computer code using a combination
of geometric figures and, once generated, can be viewed from any orientation. After a
viewing angle has been established, a rectangular grid is superimposed over the target in
the plane orthogonal to that angle. From a (uniform) randomly-selected point within
each grid cell, a ray is traced through the target; and a list is constructed of all
components encountered. If a spall-producing component is encountered, spall rays are
traced from that point of impact to all critical components in the target. These rays
represent spall fragments whose size, shape, and velocity are chosen at random from
specified distributions.

19 Hafer, TF atvd Hafer, AS, "Vulnerabihity Analysis for Surface Target: (VAST) An Ioterual Pornt-Barst Vilserability Madel”
ARBRL-TR-02154, US Army Ballistic Research Laboratory, 1979.
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Along ezch individual ray, residual masses and velocitics of the primary penctrator
and associated spall fragments are used to calculate the probability of incapacitation for
each critical component. These are then combined over all critical components and
provide a loss of function (LOF) for the particular cell, further combined over all cells to
provide a LOF for the particular orientation, and finally combined cver several
orientations to provide an overall LOF for the target. Although its input is stochastic
in nature, the VAST model is generally run with just one replication because the results
are fairly consistent from replication to replication and bncause the model requires
considerable time and, hence, expense to execute.

Data were provided by vulnerability assessors who had estimated ioss of function
for a particular surface target based on their inspection of actual damage from a
particular round of ammunition - in this case, the function evaluated was the mobility
function. When attempting to compare model output with this empirical data, it was
first necessary to determinc the exact point of impaci on the surface target during the
live-fire exercise. Then the VAST model assumed that point of impact to be the origin
of the ray representing the primary penetrator. Damage due to that ray and its
associated spall rays were then combined to provide a loss of function value which could
be compared with the empirical datum point. Therefore, only one orientation was
considered and, for that particular orientation, a ray originating at a specific point
within only one cell was examined. Encountering a spall-producing component still
required a random selection of spall characteristics; and because execution time was
reduced, the model was run using thirty replications - the output data appear in Talle
1. The averaged results were compared with the empirical data, in the manner
proposed for deterministic simulations; individual outputs from the thirty two
replications were also compared with the empirical data, this time using the method
proposed for stochastic simulations. Thus, these data provided examples for both of our
proposed validation procedures.

Results of the test for the deterministic form of the model appear in Table 2.
Under the null hypothesis of a valid model, the sum of the positive ranks should equal
the sum of the absolute values of the negative ranks; that is, T, = T,. Lehmann'?
shows how to establish critical values against which the test statistic can be evaluated.
He derives the expectation of the test statistic,

1
E[T]=3’1N(N+l)—do(do+1n, (1)
and the variance of the test statistic,

Var [T] = ?‘4- [N (N + 1) (2N + 1) - dy (d + 1) (2dg + 1)]

- LS d(d- 1) (a4 1)), @)

where T is either the sum of the positive ranks or the sum of the absolute value of the
negative ranks, N is the number of observations, dy is the number of zero differences,
and d; represents the number of tied differences for the i'" tie with n different ties.
Appealing to the central-limit theorem, T* = (T - E [T])/VVar [T] tends to the
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TABLE 2. DETERMINISTIC MODEL
Average Signed Ranks
Shot Number | Empirical Value | Modei Value | Difference | of Difference
43 734 719 015 11
44 145 700 =505 -20
45 1.000 1.000 0.000 0
48 1.000 1.000 0.000 0
47 100 118 _-.016 -12
48 8 176 124 22
490 93¢ 855 275 25
50 1.000 1.000 0.000 0
51 145 881 -.738 =31
52 1.000 967 033 18
53 668 503 165 23
54 1.000 1.000 0.000 0
55 1.006 880 110 21
56 805 286 619 30
57 550 523 027 14.5
58 1.630 986 014 10
59 1.000 457 043 28
80 050 1.600 -850 -32
62 1.000 973 027 14.5
63 100 207 -.107 -20
85 1.000 1.000 06.000 0
gs8 .668 735 - 087 -13
87 8§53 970 =017 -13
68 1.000 738 .262 24
69 1.060 1000 0.000 0
70 1.060 949 051 18
71 1.030 513 487 27
72 1.000 958 042 17
73 1.600 1.600 0.000 0
74 805 608 297 26
75 .668 879 -011 -9
76 1.000 1.000 0.000 0

Y Positive Ranks = 327

" | Negative Ranks | = 165
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Critical T-Values (@ = 0.05) = 142 (lower), 350 (upper)

Critical T-Values (@ = 0.10) = 158 {lower), 334 (upper)




standard nermal distribution as the number of non-zero differences tends to infinity.
For our example we have 32 observations, eight zero differences, and one tie with two
tied differences; therefore, E [T] = 246 and Var [T] = 2809. We can calculate critical
values by evaluating the equation T = 532 + 246, where 2 is the a/2 percentile of the
standard normal distribution. As shown at the bottom of Table 2, even at an a-level of
0.10 there is no basis for rejecting the null hypothesis.

Table 3 contains the results for the stochastic model. Recall that R; is the rank of
z; in the ith observation (y;!, v, ..., yiM, z;), and T is defined as the sum of the Rj's.
Under the null hypothesis of a valid model, 2z; has the same distribution as
it ¥ e yM; and therefore, R; is uniformly distributed over the values
1,2, .., M+ 1. Modifying the results of Lehmann!® by incorporating the number of
observations, we can calculate the expectation of the test statistic,

E[T] = % NM +2)], (3)

and the variance of the test statistic,

1 1 NS s
VrT] = 33 INMM+2) - ey [ B @8-l
where N is the number of observations, M is the number of replications of the model,
and d;; represents the number of tied values for the j' tie in the it observation with n;
different ties in the itP observation. Then T*®= (T - E [T})/VVar [T] will have
approximately a standard normal distribution. For our example we have 32
observations, 30 replications, and 51 instances of tied values with varying numbers of
ties; in this case E [T] = 512 and Var [T] = 1521. We can again calculate critical
values, this time by evaluating the equation T = 39z + 512, where Z is the a/2
percentile of the standard normal distribution. As shown at the bottom of Table 3, there
is insufficient evidence to reject the null hypothesis at an a-level of 0.05; however, at an
a-level of 0.10, the null hypothesis would be rejected.

Since in neither case could the null hypothesis be rejected at an a-level of 0.05, we
must be concerned with the possibility of a Type II error; that is, accepting an invalid
model. Figures 2-0 demonsirate the power of these tests against an alternative
consisting of a shift in the mean. Consider the deterministic case. Referring to Figure
3, we see that if F {the distribution of the differences between the model output and the
empirical data) is uniform, then the power of this test is very good since the probability
of rejection rises quickly as the parameter increases in value. Conversely, Figure 4
demonstrates that if F is Cauchy, then the power of the test is rather pcor. Results for
the stochastic case are analogous. Figure 7 shows that the power of this test is very
good if F (the distribution of the model output) and G (the distribution of the empirical
data) are both uniform. However, as seen in Figure 8, if F and G are both Cauchy, then
the power of the test is again rather poor.

Reynolds and Deaton!® have proposed other test statistics more powerful agajnst
different alternatives; but for the loss of function data where empirical results that are
close to the value one tend to be assigned that value, a shift in the mean seems to be an
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‘TABLE 3. STOCHASTIC MODEL
Rank within
Shot Number | Empirical Value | Model Values

43 734 16
44 .145 11
45 1.000 16
48 1.000 16
47 100 8
48 900 . 27
49 9830 31
56 1.000 16
51 .145 1
52 1.000 16
53 .668 r14
54 1.000 16
55 1.000 31
56 805 31
57 550 11
58 2.000 225
59 1.000 245
60 050 1
62 1.000 165
64 .100 135
65 1.000 16
66 .868 ]
67 953 .9
68 1.000 31
69 1.000 16
70 1.000 24
71 1.000 245
72 1.000 30
73 1.000 16
74 605 30
75 .668 15
76 1.000 16

Y. Ranks = 584
Critical T-Values (a = 0.05) = 435 (lower), 589 (upper)

Critical T-Values (@ = 0.10) = 447 (lower), 577 (upper)




appropriate alternative hypothesis. Since the power against this particular alternative is
fairly good overall, our confidence in the hypothesis tests tends to increase. However,
we would like to be able to make these tests and other tests still more powerful and, in
the future, will be expioring methods to accomplish this.

V. SUMMARY

When referring to computer simulation models, a few authors continue tc use the
words verification and validation interchangeably; however, most distinguish between
the two terms. Verification of a computer model assures that the simulation is behaving
as the modeler intends, while validation assures that the simulation is behaving as the
real world does. Verification is the process of debugging a computer program; valida’ion
is making it consistent with reality.

Prior to 1967 very little was written concerning the validation of simulations; but
much has appeared since then, and there has been general agreement on several points -
the most important being that to validate a computer simulation model, empirical
observations are necessary and statistical tests are desirable. All validation techniques
can be placed into one of five categories: judgemental comparisons, hypothesis testing,
spectral analysis, sensitivity analysis, and indices of performance.

Nonparametric ranking techniques are one class of statistical hypothesis tests. We
have advocated the Wilcoxon signed-ranks test as a validation procedure for
deterministic simulation models and a combination of independent Mann-Whitney tests
as a validation procedure for stochastic simulation models. They are statistical tests
which assess empirical data to provide a certain level of confidence in the computer
model. The main disadvantage of both is the same as that of all hypnthesis testing
techniques; namely, their concern for protecting against Type I errors, son:etimes at the
expense of Type Il errors. A Type I error results in rejecting a valid simulation model -
unfortunate, but not as potentially dangerous as accepting an invalid simulation model,
which is known as a Type Il error. For any particular test we can get an indication of
the probability of a Type Il error by generating a series of curves that will allow us to
examine the power of the test against various alternatives.

Power is defined as the probability of rejecting a false null hypothesis, and we
would like this value to be as close to one as possible. For our advocated tests we have
evaluated the power for some specific alternative hypotheses by incorporating a Monte-
Carlo procedure into a computer program, which allowed us to perform thousands of
replications. Each replication represents a case in which the alternative hypothesis was
true, and we determined whether or not the test rejected the null hypothesis.
Obviously, we can not compute power against an alternative hypothesis as general as,
”The simulation model is invalid.” However, in being more specific we are forced to
examine an array of different alternative hypotheses; and while a test may be powerful
against a subset of these alternatives (such as a shift in the mean of a distribution), it
might be less so against others. The most we can hope for is reasonable power against
alternatives important to a particular investigation. Both the Wilcoxon signed-ranks
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test and the combination of independent Mann-Whitney tests appear to have reasonable
power against a shift in the mean, but we would like to be able to increase it.

For any given alternative hypothesis there are several ways of increasing the power.
One such way can be seen in Figures 2-9 - increasing the number of observations.
Another way is to reduce the level of confidence in the test itself; that is, allow the
probability of a Type I error to increase. In the future we will be investigating other
methods for increasing the power of statistical hypothesis tests in general and of the two
we have advocated in particular. These methods will include a statistical procedure
known as bootstrapping, a mathematical theory known as fuzzy sets, and, possibly, a
combination of the two. Because of the importance in this area of computer simulation
validation, we hope to develop ways to make these tests more powerful against a wide
range of alternatives while still permitting them to provide acceptable levels of
confidence in their results.
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